

http://users.owt.com/chubbard/gcdam/highre s/dam08.jpg

http://www.kpbs.org/photos/2010/apr/16/4 329/

Optimized Hydropower with Integrated Wind Generation on the Mid-Columbia River Mitch Clement M.S. Candidate University of Colorado at Boulder Center for Advanced Decision Support for Water and **Environmental Systems** RiverWare User Group Meeting, February 1, 2012

Project Overview

- Sponsor: Oak Ridge National Laboratory Brennan Smith
- Principal Investigator: Edie Zagona, CADSWES
- Co-P.I.: Tim Magee, CADSWES
- Goal : Develop framework to evaluate impact of wind on hydro with realistic hydro model
- ORNL chose Mid-Columbia system
 - Highly-constrained system
 - High wind potential and existing wind
 - Willing participation from Mid-C utilities
- CADSWES developed Mid-C model and framework
 - Meetings with ORNL and Mid-C utilities to obtain physical and policy info and model validation

http://www.nwd-wc.usace.army.mil/report/colmap.htm

Mid-Columbia Hydro System

- 2 Federal projects
 - Grand Coulee USBR
 - Chief Joseph USACE
- 5 Non-fed projects
 - Local PUDs
 - Shares owned by participants
- 14 GW capacity
- Little storage ROR downstream of Grand Coulee

System Overview – Policy and Constraints

- Major Agreements Affecting Operations
 - Columbia River Treaty
 - Canada provides flood control; U.S. provides power in exchange
 - Hanford Reach Fall Chinook Protection Program
 - Mid-Columbia Hourly Coordination Agreement
 - Coordinated scheduling of non-fed projects by Central
 - Non-feds (Central) coordinate with federal projects through bias
- Significant Environmental Constraints
 - Vernita Bar min/max flows seasonal
 - Minimum spill for fish passage Non-fed projects
 - Max total dissolved gas levels limits spill

Mid-Columbia RiverWare Model

Plant power tables based on unit data from Mid-C utilities and BPA Stage-flow-tailwater tables Fed – equations from BPA Nonfed – tables and curves from utilities or regression from observed data Storage and routing from **Hourly Coordination** Manual 6 tributaries included

Mid-Columbia RiverWare Model - Policy

🕻 Optimization Goal Set Editor - "Mid-Columbia Policy.opt.gz"					
<u>F</u> ile <u>E</u> dit <u>S</u> et <u>V</u> iew					
S	X:V	Yid-C RiverWare\Mid-Columbia Policy.oot.αz) RP	L Set Not Loaded 🔗
Na	me		Priority	On	Туре
4	P	User Defined Variables		<	Policy Group
		G Priest Rapids Daily High and Low Flows for Flow Bands	1	~	Goal
		G Chief Joseph Revised Request for CJAD	2	<	Goal
		G Bias, Accumulated Exchange and Delivered Energy	3	~	Goal
		G TDGs	4	~	Goal
⊳	P	License Min Pool Elevation	5-5	~	Policy Group
⊳	P	License Max Pool Elev, Pateros Flood Control, VB Min Flow	6-6	~	Policy Group
⊳	P	Chief Joseph Daily Release	7-7	~	Policy Group
⊳	P	Grand Coulee TW, Grand Coulee Drawdown, Chief Joseph Cold Weather Gen	8-8	~	Policy Group
⊳	P	Chief Joseph Accumulated Deficiency	9-12	~	Policy Group
⊳	P	Federal Generation Requests	13-13	~	Policy Group
⊳	P	Grand Coulee and Chief Joseph Scheduled Outflow	14-15	~	Policy Group
⊳	P	Federal Bias Limits, Federal Accumulated Exchange Limits	16-16	~	Policy Group
⊳	P	Fish Spill and Bypass	17-17	~	Policy Group
⊳	P	Total Dissolved Gas	18-19	~	Policy Group
⊳	P	Vernita Bar Protection Level Flows and Drafting	20-27	~	Policy Group
⊳	P	No Federal Spill	28-28	~	Policy Group
⊳	P	Priest Rapids Flow Bands	29-30	~	Policy Group
⊳	P	Spawning Period Flows	31-31	~	Policy Group
⊳	P	Recreation Levels	32-32	×	Policy Group
⊳	P	Minimum Generation Requirements	33-37	~	Policy Group
⊳	P	Nonfed Generation Requests	38-38	/	Policy Group
⊳	P	Target Bias Limits, Target Accumulated Exchange Limits	39-39	/	Policy Group
⊳	P	Wells Goose Nesting	40-40	~	Policy Group
⊳	P	Special Operations	41-41	×	Policy Group
⊳	P	Spawning Period Target Flow	42-42	1	Policy Group
⊳	P	Ending Conditions	43-47	~	Policy Group
⊳	P	Minimize Outflows	48-50	~	Policy Group
⊳	P	Delta Spill and Delta Turbine Release	51-51	1	Policy Group
⊳	U	Utility Group		1	Utility Group

- Federal project constraints at higher priorities
 - Non-fed perspective
- Non-fed power constraints below nearly all environmental constraints
- Complex tracking of drafting and refill when meeting flow constraints
- Objectives balance accumulated exchange (bias) targets with maintaining max water

RiverWare Enhancement – Autoregressive Outflow Adjustment for Reaches

- Motivation: Flow constraints at Vernita Bar during salmon spawning season
 Reverse Load Factoring
 - Reverse Load Factoring high Priest Rapids outflows at night to prepare for low max flow during daylight hours
 - Delayed response at Vernita Bar described as something like bank storage

- Multiple linear regression using only Priest Rapids outflow from previous time steps was unsatisfactory
- Regression using routed Priest Rapids outflow and Vernita Bar flow from previous hour fit data well

RiverWare Enhancement – Autoregressive Outflow Adjustment for Reaches

 Autoregressive Outflow method in Outflow Adjustment category

 $\begin{aligned} Reach. Outflow_t \\ &= B_1 Routed \ Flow_t + B_2 Reach. Outflow_{t-1} \\ &+ B_3 Reach. Outflow_{t-2} + \ldots + B_N Reach. Outflow_{t-N+1} \end{aligned}$

- RiverWare first calculates Routed Flow (any routing method) then applies weighted average using Reach Outflow from any number of previous time steps – autoregressive terms
- User sets the weighting coefficients

Total Dissolved Gas Modeling

- High TDG levels (nitrogen) cause gas bubble disease high fish mortality
- Effectively limits spill controlling constraint in high flow seasons
- Data and equations from existing models
 - Columbia River Salmon Passage (CRiSP) Model– University of Washington
 - SYSTDG USACE Northwest Division

•
$$C_{Spill} = b - a \ e^{-kQ_{Spill}}$$

Total Dissolved Gas Modeling

- Entrainment a fraction of turbine release has same concentration as spill
- Compounding effect in cascading reservoir system

$$C_{M} = \frac{C_{S}(Q_{S} + Q_{E}) + C_{FB} (Q_{T} - Q_{E})}{Q_{S} + Q_{T}}$$

- Nonlinear
- Non-separable
- Non-convex cannot use piecewise linearization for optimization, potential local optima

Total Dissolved Gas Modeling

In Mid-Columbia RiverWare Model:

• $C_M = C_{M,Est} + \Delta C_M$

•
$$\Delta C_M = \frac{\partial C_M}{\partial Q_S} \Delta Q_S + \frac{\partial C_M}{\partial Q_T} \Delta Q_T + \frac{\partial C_M}{\partial C_{FB}} \Delta C_{FB}$$

- First Order Taylor Series Approximation
- Iterative procedure using RiverWare batch mode
 - Partial derivatives calculated pre-run with estimates from previous run – expression slots
 - DMIs export Q_S and Q_T then import as $Q_{S,Est}$ and $Q_{T,Est}$
 - Convergence criteria on ΔQ_S , ΔQ_T
- Modified successive linear goal programming provides a heuristic solution

Wind Integration Modeling – General Framework

- Can be used with any wind model or wind level
- Wind incorporated as negative load
- Prevents "perfect forecast knowledge" effects
- One-week "Master" Run composed of 28 individual one-week runs
 - Hours 1-6 use "actual" net load no forecast error
 - Hours 7-168 use net load forecast any forecast model
 - Save output from hours 1-6 and move ahead six hours for next individual run
 - Now hours 7-12 use actual net load, updated forecast for hours 13-174; repeat for all 28 six-hour blocks
 - Master run outputs from first six hours of each individual run

Wind Integration Modeling – General Framework

- Batch mode script steps through all 28 individual runs
 - Automated import and export of data by DMIs
 - Incorporates iterative TDG routine
- Metrics of system performance:
 - Constraint satisfaction calculations from optimization goal set repeated in expression slots to evaluate degree of constraint violations
 - Spill as energy not all spill is equal
 - Energy in storage accounts for generation potential from all downstream projects

Wind Integration Modeling – Synthetic Wind Model for Testing

- Wind = f(previous wind, avg profile, random var)
 Daily profile based on observed BPA wind, scaled
- Wind forecast weighted to previous wind for short lead time, tends to average profile for longer lead times
- Assumes wind displaces constant thermal source
 Total hydro generation approximately equal

Wind Integration Modeling – Sample Results

Spill time series - increase in spill events for the wind scenario

*Sample results are for demonstration of the methodology only. They are not based on a validated wind scenario and should not be used to draw conclusions about the impacts of wind integration

Wind Integration Modeling – Sample Results

Increased spill leads to higher spill as energy

*Sample results are for demonstration of the methodology only. They are not based on a validated wind scenario and should not be used to draw conclusions about the impacts of wind integration

Wind Integration Modeling – Sample Results

Differences in energy in storage

*Sample results are for demonstration of the methodology only. They are not based on a validated wind scenario and should not be used to draw conclusions about the impacts of wind integration

Project Accomplishments

- Realistic model of Mid-Columbia system, including non-power constraints, to demonstrate effects of wind integration
- Incorporated TDG modeling in optimization
- Advancement in successive linear goal programming in RiverWare

Mid-Columbia Hydropower and Wind Integration

- Final report available
- Next steps:
 - Mid-Columbia Utilities putting model into operational use
 - Use of model and framework for additional studies
 - Extension of components of methodology to other systems, adding explicit economic objectives based on market prices for energy and ancillary services